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Introduction 

A physical process produces three elements, call them u, v, and w. We can 
measure these elements, but because of certain relationships between them, it turns out 
that we are interested in the ratio ulw. We would like to predict that ratio using another 
ratio, vlw. Thus, our predictor and response variables are correlated. Also, there is 
measurement error in all three measurements. 

The physical process is carried out in groups, and there are anywhere from 2 to 6 
samples per group. A traditional practice is to calculate simple linear regressions, 
considering measurement error, within each group. However, the estimated regression 
coefficients from these regressions have large variances, and in some cases, a regression 
is not even possible (e.g., only two samples in a group, and the ratios have the same x- 
coordinate). The large uncertainty associated with these regressions is cause for concern, 
so we seek a method for reducing that uncertainty. 

Discussion_ 

In order to illustrate hierarchical Bayes regression, we apply the method to the set 
of data in Table 1 below. We have three groups of data, which are ratios of the 
measurements resulting from the physical process under consideration, with 3,4, and 2 
samples per group, respectively. 

lCov(u/w, v/w) I 0.01351 0.00691 0.0161 0~01270.0091) 0.00581 0.02481 0.01351 0.00691 
Table 1. 

We consider a full hierarchical Bayesian (HB) model as a means of combining the 
regression data across groups. HB is a model in which all the unknown parameters, 
including prior distribution parameters (hyperparameters) are treated as random variables 
[2]. Let response variable y = u/w, observed predictor variable x = vlw, and true predictor 
variable be denoted x*, then the basic model is the following: 
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where, for thejth sample within the ifh group, 
yii is the response variable of interest, 
x i  is the true predictor variable (xu is the observed 

predictor measured with error), 
ai is the unknown random intercept, 
pi is the unknown random slope, 
eo is the error about the regression line, and 
vi, is the measurement error in yij . 

In the HB formulation, the unknown parameters ai and pi are treated as random 
variables and given the following distributions: 

and error terms have the following distributions: 

Recalling that the (observed) ratios xu and yu are correlated, we use the following 
formulas to find the variance and the covariance between them. For eachjth sample 
within ith group, 

the measurement error in y~ has variance (found similarly) 

so the response yo (from the model in equation 1) has total variance 

and the covariance of the observed xu and response yo is 
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We then define a bivariate normal random variable, 

ai + pix,; 
where pij = [ xi  1, the variance/covariance matrix of xu and yij is 

9 oqo 7 a,u 9 and a:u are assumed to be known from the data, 

and a:i is to be estimated. 

Figure 1 shows the directed graph that describes the model. 
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Figure 1. Directed Graph 
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We implemented this model in WinBUGS, the Windows version of BUGS 
software (Bayesian inference Using Gibbs Sampling). As more fully explained in [ 11 and 
[2], this software assumes a Bayesian or full probability model, in which all quantities are 
treated as random variables. We define a joint distribution over all unobserved and 
observed quantities, and then obtain inferences on the main quantities of interest using a 
Monte Carlo approach to numerical integration (Gibbs sampling). 

The WinBUGS code for this model is relatively simple, and is shown in Figure 2 
on the following page. We chose to regress on (x  - 1) for our example here, rather than 
just x, in order to reduce the autocorrelations within the parameter chains. Note that 
WinBUGS uses parameters tau = (2)"' and prec = E-', and we use the following flat 
h yperpriors : 

2, - Gamma(l.0 x 

Za- Gamma(l.0 x 

zp - Gamma(l.0 x loe3, 1.0 x 

1.0 x 

1.0 x l O q ,  
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model 
{ 
for(j in 1:N) { 
# jth overall sample 
zlj,l:2] - dmnorm(rnu~,],prec~,,]) 
muu,l] <- alpha[testrj]] + beta[test~]]*(xti]-l) 
mub,2] <- xu] 
xu] - dnorm(1, taux) 
precti, 1,lI <- varxcj]/(-covxy~]*covxy~] + (varetau] + varepsilon[testcj]])*v~x~]) 
preclj,1,21 <- -covxylj]/(-covxycj]*covxylj] + (varetau] + varepsilon[test~]])*varx~]) 
precCj,2,1] <- preclj,l,2] 
precu,2,2] <- (varepsilon[test~]]+varetali3>/(-covxy~]*covxy~] + (varetau] 3- 
varepsilon[test~]])*varx~]) 
1 
for(i in 1:T) { 
# ith group 
alpha[i] - dnorm(mualpha, taualpha) 
beta[i] - dnorm(mubeta, taubeta) 
varepsilon[i] - dgamma( 1,30) 
muavg[i] e- sum(mu[cumsize[i] +1: cumsize[i+l], l])/(cumsize[i+l] - cumsize[i]) 

taux - dgamma( 1 .OE-3, 1 .OE-3) 
mualpha - dnorrn(0,l.OE-lO) 
taualpha - dgamma( ]I .OE-3, 1 .OE-3) 
mubeta - dnorm(0,l .OE- 10) 
taubeta - dgamma( 1 .OE-3, 1 .OE-3) 
1 

# Data 
list(N = 9, T = 3, cumsize = c(0,3,7,9), test = c( 1,1,1,2,2,2,2,3,3), z=structure(.Data = 
c(1.29,1.14,1.1,0.7,1.33,1.33,1.4,1,1.1 1,0.89, 
0.88,0.75,1.83,1 .5, 1.29,l. 14,l. 1,0.7),.Dim=c(9,2)),varx=c(0,026,0.0099,0.0353,0.02,0. 
0 1 59,O.O 1 1 2,0.0456,0.026,0.0099),vareta=c(0.0339, 
0.0246,0.0353,0.0396,0.025,0.0153,0.0683,0.0339, 
0.0246),~0~~y=c(0.0135,0.0069,0.016,0.0126,0,0091,0.0058,0.0248,0.0135,0.0069)) 

# hits  
list(taux = .01, mualpha = 0, taualpha = .01, mubeta = 0, taubeta = .01, varepsilon = 
c(. 1 ). 1 ). 1)) 

Figure 2. WinBUGS code 
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Results 

WinBUGS generates results in several formats. Table 2 shows results in tabular 
format, for 100,000 iterations, using the code and data from Figure 2. All values are 
calculated starting at iteration 501, in order to account for a burn-in of 500 iterations. 

Table 2. Results 

Figure 3 shows the HB regressions obtained with this method, as well as the 
classical regressions for each group. The classical regressions give the best fit to the data 
within each group, of course, but we consider the HB regressions an improvement in 
predictive ability for population parameters. 
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Figure 3. Comparison of regressions ignoring measurement error 
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Since the individual data points in each group are derived from the same physical 
process, we assume that they belong to the same super-population, Le., they have 
something in common. Given that assumption, we borrow strength by combining data 
across groups. With that borrowing, the effect of any extreme values is lessened. That is, 
values that may be affected to a great degree by one or two extremes in the individual 
groups are shrunk towards the mean in the HB regressions. This is especially useful with 
sparse data. For example, as seen in Figure 3 for group 3, the classical regression is 
perfect, because there are only two points. However, because of the effect of borrowing 
strength, we expect the HB regression to give better estimates of certain population 
parameters of interest, e.g., the mean ratio y .  

Previous analysis techniques for this problem included confidence interval 
estimates obtained by calculating the mean of y for each group and bounding by 10% on 
either side. Figure 4 shows our posterior densities of the mean of y for each group. The 
standard deviations are all less than 10% of the means (see Table 2), indicating that we 
can obtain a tighter and more accurate level of estimation with the HB approach. 
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Figure 4. Distribution of the mean of y 

Issues 

There are several issues that we intend to continue to explore. 

Model Validation: Simulate data under our HB model and compare to real data. 
Subpopulations of groups: It may make sense, based on physical characteristics, 
to combine some groups. 
Multiple regressors: There are, in fact, other physical measurements of this 
process; can anything be gained by using other regressors? 
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Nonlinear regression models: What criteria do we use for model selection? 
Identification of priorhyperprior distributions: What happens if we choose 
different prior distributions (how sensitive are our results to different priors)? 

Conclusions 

A large data set is traditionally partitioned into smaller groups, and individual 
regressions are done within each group. The uncertainty on these regressions is high, SO 
we looked for a way to combine the data, We demonstrated the use of HB, in the context 
of WinBUGS, as a nice statistical framework for combining and improving the 
regressions. This method is particularly useful when regressions on the individual groups 
are weak. The strength of HB is its potential for reducing the uncertainty in predictions. 

References: 
1. Spiegelhalter DJ, Thomas A, Best N, April 2000, WinBUGS ver 1.3 User Manual. 
2. Gilks WR, Richardson S and Spiegelhalter DJ (Eds.) (1996) Markov chain Monte Carlo in 

Practice. Chapman & Hall, London. 
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Introduction 

A physical process produces three elements, call them 
u, v, and w. We can measure these elements, but we 
are interested in the ratio ulw. We would like to 
predict that ratio using another ratio, vlw. 

Complications: 
The variables are correlated 
Measurements are made with error 
Multiple Groups 
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ard Approach 

A traditional practice is to calculate simple linear 
regressions within each group. However, there are 
several problems with this method applied to the 
data obtained from the physical process under 
consideration: 
Sparse data 
Estimated regression coefficients from these 
regressions have large variances 
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APPLICATIONS 

New Approach 

Hierarchical Bayes (HB) is a model in which all of 
the unknown parameters, including prior 
distribution parameters (hyperparameters), are 
treated as random variables. 

We will use a full HB model as a means of 
combining the regression data across groups. 
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Basic Model 
= + p i x * i j  + ~ i j  + q.. where 

Yij v, 
y i j  is the response variable of interest, 
x * ~  is the true predictor variable (xij is the observed 

predictor measured with error), 
CI,: is the unknown random intercept, 
pi is the unknown random slope, 
gij is the error about the regression line, and 
rl i j  is the measurement error in yo. 

HB Formulation 

In the HB formulation, the unknown 
parameters ai and pi (intercept and slope) 
are treated as random variables and given the 
following distributions: 

and error terms have the following 
distributions: 

q - NPa, 0,") pi - NPp 9 Op2) 
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Variance Equations 
Since the ratios xu and yo are correlated, we use the 

following formulas to find the variance and the 
covariance between them. For each jth sample 
within ith group, 

the measurement error in yo has variance I 

Covariance 
The response yo (from the basic model equation) 
has total variance 

a; = a,' + a; 

and the covariance of the observed xij and 
response yij  is 
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WinBUGS Implementation 

We implemented this model in WinBUGS (Bayesian 
inference Using Gibbs Sampling). 

This software assumes a full probability model, 
where all quantities are treated as random variables. 

A joint distribution is defined over all observed and 
unobserved quantities. 
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Adjustment to Model Notation 

We define a bivariate normal random variable, 

where pq = [a' 1 , the variance/covariance 

matrix. of xij and yq is 

assumed to be known from the data 
Lo8 Alamos 
Nalonal WDnIwy 

xi - N( 1 , rX), 2; - Gamma( 1 .O x 10-3, 1 .O x 10-3) 

pa- N(0, 1.0 x lO-'O), Z, - Gamma(1 x 

pp-  N(0, 1.0 x 10-lo), zP - Gamma(1 x 

1 x 

1 x 10-3) 
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Results-Regression Parameters 

MC 
Error 
6.159B-4 

6.106E-4 

6.352E-4 

- 
Node Mean SD 

2.5% Median 97.5% 

1.029 1.235 1.445 

1.046 1.24 1.447 

0.9529 1.198 1.433 

[alpha[2] I 1.248 1 0.0984 

(beta[3] I 0.74711 0.875 
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Error 

7.86E-4 1.06 1.246 1.45 

9.26E-4 1.025 1.51 1.491 

0.0106 -0.6834 0.6995 2.1 15 

0.01 164 -0.2412 0.9987 2.794 

0.010991 -0.81551 0.74471 2.3161 
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Group 1 Regression Comparisons 
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Group 3 Regression Comparisons 
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Prediction Interval Comparisons 
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Issues 
There are still several issues to be explored: 

Subpopulations: based on physical 
characteristics, we may combine some groups 
Multiple regressors: can anything be gained by 
using other regressors? 
Nonlinear regression models: what criteria do we 
use for model selection? 
Identification of priorhyperprior distributions: 
sensitivity analysis 
Model Validation. 

~ 

Conclusion 
0 We demonstrated the use of HB in the context of 

WinBUGS. This method is particularly useful 
when regressions on the individual groups are weak 
or the data is sparse. The strength of the HB is in its 
ability to reduce and accurately represent the 
uncertainty in predictions. 

* We consider the HB approach an improvement over 
the traditional method of performing individual 
regressions within each group. 
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